<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">Is it enough to use 8*r and 8*(r^-1 mod q) for this protocol?<div class=""><br class=""></div><div class="">If not, or if you can’t prove it, you could always use my library at</div><div class=""><br class=""></div><div class=""><a href="https://sourceforge.net/projects/ed448goldilocks/" class="">https://sourceforge.net/projects/ed448goldilocks/</a></div><div class=""><br class=""></div><div class="">It gives a prime-order quotient group of Ed448 and Curve25519, and it implements Elligator and division mod q.</div><div class=""><br class=""></div><div class="">— Mike<br class=""><div class=""><br class=""><div><blockquote type="cite" class=""><div class="">On May 30, 2017, at 3:31 PM, Alexey Ermishkin <<a href="mailto:scratch.net@gmail.com" class="">scratch.net@gmail.com</a>> wrote:</div><br class="Apple-interchange-newline"><div class=""><div class="">Thanks for pointing out at my mistakes and a very good explanation. I will<br class="">continue to dig deeper<br class=""><br class="">_______________________________________________<br class="">Curves mailing list<br class=""><a href="mailto:Curves@moderncrypto.org" class="">Curves@moderncrypto.org</a><br class="">https://moderncrypto.org/mailman/listinfo/curves<br class=""></div></div></blockquote></div><br class=""></div></div></body></html>