<div dir="ltr"><div dir="ltr"><div>Arg, technical difficulties. Here are the promised curves</div><div>(for humour value / general interest if nothing else) :</div><div><br></div><div><a href="https://0x0.st/-cpa.png">https://0x0.st/-cpa.png</a></div><div><a href="https://0x0.st/-cpB.png">https://0x0.st/-cpB.png</a></div><div><a href="https://0x0.st/-XyZ.png">https://0x0.st/-XyZ.png</a></div><div><a href="https://0x0.st/-cpM.png">https://0x0.st/-cpM.png</a></div><div><br></div><div>Each knot determines a cyclic group, and the tent map <br></div><div>iterates between intersections with blue boundaries. <br></div><div><br></div><div>The tent map on rational inputs can be used in DLP.<br></div><div>Are tent map cyclic groups "too easy" or just "too slow"? <br></div><div>Is there a sensible way to define pairing for two equal-length <br></div><div>tent map cycles?<br></div><br><div>Another option is to hook up a whole lattice of interlinked</div><div>families of Edwards curves, then choose an irrational input <br></div><div>such as Pi. The trajectory will take a randomish walk through <br></div><div>the plane, and the endpoints can be used as public keys.</div><div>How bad an idea is this in terms of attacks?<br></div><div><br></div><div>(I know, the ECC addition rules are fast, especially due <br></div><div>to point doubling, but continue to explore what else can</div><div>be done.)<br></div><div><br></div>This idea, partially from Joan Birman, seems to have <br><div>some promise, so I will try to write more about it when <br></div><div>conditions are more conducive to work. <br></div><div><br></div><div>Hope that soon the pandemic ends and we can achieve <br></div><div>world peace, shalom/salama, kosen rufu, etc. <br></div><br></div><div dir="ltr"><div>--Brad<br></div><div><br></div></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Apr 4, 2021 at 11:37 AM Brad Klee <<a href="mailto:bradklee@gmail.com">bradklee@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>This also doesn't make sense... when you answer a question you ask</div><div>by talking to yourself online (not as a joke), see again: <br></div><div><br></div><div><a href="https://community.wolfram.com/groups/-/m/t/2232630" target="_blank">https://community.wolfram.com/groups/-/m/t/2232630</a></div><div>(with added Voltaire translation & hashclash link.)<br></div><div><br></div><div>Where is the hidden answer and why? Here: <a href="https://0x0.st/-ci5.text" target="_blank">https://0x0.st/-ci5.text</a> .<br></div><div><br></div><div>Not too off-topic in my opinion, but for "semi-purists" to get back within</div><div>list parameters ("New Curves"), see also Test 1 & Test 2: <br></div><div><br></div><div><a href="https://community.wolfram.com/groups/-/m/t/2236396" target="_blank">https://community.wolfram.com/groups/-/m/t/2236396</a></div><div><a href="https://community.wolfram.com/groups/-/m/t/2237003" target="_blank">https://community.wolfram.com/groups/-/m/t/2237003</a></div><div><br></div><div>Not sure how knot recognition would be used for cryptography, but the <br></div><div>problem certainly meets a difficulty requirement. Interesting article <br></div><div>from Sergei Gukov et al. "Learning to Unknot": <br></div><div><br></div><div><a href="https://arxiv.org/abs/2010.16263" target="_blank">https://arxiv.org/abs/2010.16263</a></div><div><br></div><div>I didn't see if Aurore has anything about machine learning, so far I don't,</div><div>but it looks like homology & security will both rely increasingly on smart, <br></div><div>self-evolving techniques. <br></div><div><div><br></div><div>--Brad</div><div><br></div><div> <br></div></div></div>
</blockquote></div>